/** * security_init - initializes the security framework * * This should be called early in the kernel initialization sequence. */ int __init security_init(void) { printk(KERN_INFO "Security Framework initialized\n"); security_fixup_ops(&default_security_ops); security_ops = &default_security_ops; do_security_initcalls(); return 0; } void reset_security_ops(void) { security_ops = &default_security_ops; } /* Save user chosen LSM */ static int __init choose_lsm(char *str) { strncpy(chosen_lsm, str, SECURITY_NAME_MAX); return 1; } __setup("security=", choose_lsm); /** * security_module_enable - Load given security module on boot ? * @ops: a pointer to the struct security_operations that is to be checked. * * Each LSM must pass this method before registering its own operations * to avoid security registration races. This method may also be used * to check if your LSM is currently loaded during kernel initialization. * * Return true if: * -The passed LSM is the one chosen by user at boot time, * -or the passed LSM is configured as the default and the user did not * choose an alternate LSM at boot time. * Otherwise, return false. */ int __init security_module_enable(struct security_operations *ops) { return !strcmp(ops->name, chosen_lsm); } /** * register_security - registers a security framework with the kernel * @ops: a pointer to the struct security_options that is to be registered * * This function allows a security module to register itself with the * kernel security subsystem. Some rudimentary checking is done on the @ops * value passed to this function. You'll need to check first if your LSM * is allowed to register its @ops by calling security_module_enable(@ops). * * If there is already a security module registered with the kernel, * an error will be returned. Otherwise %0 is returned on success. */ int __init register_security(struct security_operations *ops) { if (verify(ops)) { printk(KERN_DEBUG "%s could not verify " "security_operations structure.\n", __func__); return -EINVAL; } if (security_ops != &default_security_ops) return -EAGAIN; security_ops = ops; return 0; }
/** * crypto_aes_set_key - Set the AES key. * @tfm: The %crypto_tfm that is used in the context. * @in_key: The input key. * @key_len: The size of the key. * * Returns 0 on success, on failure the %CRYPTO_TFM_RES_BAD_KEY_LEN flag in tfm * is set. The function uses crypto_aes_expand_key() to expand the key. * &crypto_aes_ctx _must_ be the private data embedded in @tfm which is * retrieved with crypto_tfm_ctx(). */ int crypto_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, unsigned int key_len) { struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); u32 *flags = &tfm->crt_flags; int ret; ret = crypto_aes_expand_key(ctx, in_key, key_len); if (!ret) return 0; *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; return -EINVAL; } EXPORT_SYMBOL_GPL(crypto_aes_set_key); /* encrypt a block of text */ #define f_rn(bo, bi, n, k) do { \ bo[n] = crypto_ft_tab[0][byte(bi[n], 0)] ^ \ crypto_ft_tab[1][byte(bi[(n + 1) & 3], 1)] ^ \ crypto_ft_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \ crypto_ft_tab[3][byte(bi[(n + 3) & 3], 3)] ^ *(k + n); \ } while (0) #define f_nround(bo, bi, k) do {\ f_rn(bo, bi, 0, k); \ f_rn(bo, bi, 1, k); \ f_rn(bo, bi, 2, k); \ f_rn(bo, bi, 3, k); \ k += 4; \ } while (0) #define f_rl(bo, bi, n, k) do { \ bo[n] = crypto_fl_tab[0][byte(bi[n], 0)] ^ \ crypto_fl_tab[1][byte(bi[(n + 1) & 3], 1)] ^ \ crypto_fl_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \ crypto_fl_tab[3][byte(bi[(n + 3) & 3], 3)] ^ *(k + n); \ } while (0) #define f_lround(bo, bi, k) do {\ f_rl(bo, bi, 0, k); \ f_rl(bo, bi, 1, k); \ f_rl(bo, bi, 2, k); \ f_rl(bo, bi, 3, k); \ } while (0) static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) { const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); const __le32 *src = (const __le32 *)in; __le32 *dst = (__le32 *)out; u32 b0[4], b1[4]; const u32 *kp = ctx->key_enc + 4; const int key_len = ctx->key_length; b0[0] = le32_to_cpu(src[0]) ^ ctx->key_enc[0]; b0[1] = le32_to_cpu(src[1]) ^ ctx->key_enc[1]; b0[2] = le32_to_cpu(src[2]) ^ ctx->key_enc[2]; b0[3] = le32_to_cpu(src[3]) ^ ctx->key_enc[3]; if (key_len > 24) { f_nround(b1, b0, kp); f_nround(b0, b1, kp); } if (key_len > 16) { f_nround(b1, b0, kp); f_nround(b0, b1, kp); } f_nround(b1, b0, kp); f_nround(b0, b1, kp); f_nround(b1, b0, kp); f_nround(b0, b1, kp); f_nround(b1, b0, kp); f_nround(b0, b1, kp); f_nround(b1, b0, kp); f_nround(b0, b1, kp); f_nround(b1, b0, kp); f_lround(b0, b1, kp); dst[0] = cpu_to_le32(b0[0]); dst[1] = cpu_to_le32(b0[1]); dst[2] = cpu_to_le32(b0[2]); dst[3] = cpu_to_le32(b0[3]); }
/* * Cryptographic API. * * SHA-256, as specified in * http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf * * SHA-256 code by Jean-Luc Cooke. * * Copyright (c) Jean-Luc Cooke * Copyright (c) Andrew McDonald * Copyright (c) 2002 James Morris * SHA224 Support Copyright 2007 Intel Corporation * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * */ #include #include #include #include #include #include #include #include static inline u32 Ch(u32 x, u32 y, u32 z) { return z ^ (x & (y ^ z)); } static inline u32 Maj(u32 x, u32 y, u32 z) { return (x & y) | (z & (x | y)); } #define e0(x) (ror32(x, 2) ^ ror32(x,13) ^ ror32(x,22)) #define e1(x) (ror32(x, 6) ^ ror32(x,11) ^ ror32(x,25)) #define s0(x) (ror32(x, 7) ^ ror32(x,18) ^ (x >> 3)) #define s1(x) (ror32(x,17) ^ ror32(x,19) ^ (x >> 10)) static inline void LOAD_OP(int I, u32 *W, const u8 *input) { W[I] = get_unaligned_be32((__u32 *)input + I); } static inline void BLEND_OP(int I, u32 *W) { W[I] = s1(W[I-2]) + W[I-7] + s0(W[I-15]) + W[I-16]; } static int sha224_init(struct shash_desc *desc) { struct sha256_state *sctx = shash_desc_ctx(desc); sctx->state[0] = SHA224_H0; sctx->state[1] = SHA224_H1; sctx->state[2] = SHA224_H2; sctx->state[3] = SHA224_H3; sctx->state[4] = SHA224_H4; sctx->state[5] = SHA224_H5; sctx->state[6] = SHA224_H6; sctx->state[7] = SHA224_H7; sctx->count = 0; return 0; } static int sha256_init(struct shash_desc *desc) { struct sha256_state *sctx = shash_desc_ctx(desc); sctx->state[0] = SHA256_H0; sctx->state[1] = SHA256_H1; sctx->state[2] = SHA256_H2; sctx->state[3] = SHA256_H3; sctx->state[4] = SHA256_H4; sctx->state[5] = SHA256_H5; sctx->state[6] = SHA256_H6; sctx->state[7] = SHA256_H7; sctx->count = 0; return 0; }
#include#include #include #include /* iint action cache flags */ #define IMA_MEASURE 0x00000001 #define IMA_MEASURED 0x00000002 #define IMA_APPRAISE 0x00000004 #define IMA_APPRAISED 0x00000008 /*#define IMA_COLLECT 0x00000010 do not use this flag */ #define IMA_COLLECTED 0x00000020 #define IMA_AUDIT 0x00000040 #define IMA_AUDITED 0x00000080 /* iint cache flags */ #define IMA_ACTION_FLAGS 0xff000000 #define IMA_DIGSIG 0x01000000 #define IMA_DIGSIG_REQUIRED 0x02000000 #define IMA_PERMIT_DIRECTIO 0x04000000 #define IMA_NEW_FILE 0x08000000 #define IMA_DO_MASK (IMA_MEASURE | IMA_APPRAISE | IMA_AUDIT | \ IMA_APPRAISE_SUBMASK) #define IMA_DONE_MASK (IMA_MEASURED | IMA_APPRAISED | IMA_AUDITED | \ IMA_COLLECTED | IMA_APPRAISED_SUBMASK) /* iint subaction appraise cache flags */ #define IMA_FILE_APPRAISE 0x00000100 #define IMA_FILE_APPRAISED 0x00000200 #define IMA_MMAP_APPRAISE 0x00000400 #define IMA_MMAP_APPRAISED 0x00000800 #define IMA_BPRM_APPRAISE 0x00001000 #define IMA_BPRM_APPRAISED 0x00002000 #define IMA_MODULE_APPRAISE 0x00004000 #define IMA_MODULE_APPRAISED 0x00008000 #define IMA_FIRMWARE_APPRAISE 0x00010000 #define IMA_FIRMWARE_APPRAISED 0x00020000 #define IMA_APPRAISE_SUBMASK (IMA_FILE_APPRAISE | IMA_MMAP_APPRAISE | \ IMA_BPRM_APPRAISE | IMA_MODULE_APPRAISE | \ IMA_FIRMWARE_APPRAISE) #define IMA_APPRAISED_SUBMASK (IMA_FILE_APPRAISED | IMA_MMAP_APPRAISED | \ IMA_BPRM_APPRAISED | IMA_MODULE_APPRAISED | \ IMA_FIRMWARE_APPRAISED) enum evm_ima_xattr_type { IMA_XATTR_DIGEST = 0x01, EVM_XATTR_HMAC, EVM_IMA_XATTR_DIGSIG, IMA_XATTR_DIGEST_NG, IMA_XATTR_LAST }; struct evm_ima_xattr_data { u8 type; u8 digest[SHA1_DIGEST_SIZE]; } __packed; #define IMA_MAX_DIGEST_SIZE 64 struct ima_digest_data { u8 algo; u8 length; union { struct { u8 unused; u8 type; } sha1; struct { u8 type; u8 algo; } ng; u8 data[2]; } xattr; u8 digest[0]; } __packed; /* * signature format v2 - for using with asymmetric keys */ struct signature_v2_hdr { uint8_t type; /* xattr type */ uint8_t version; /* signature format version */ uint8_t hash_algo; /* Digest algorithm [enum pkey_hash_algo] */ uint32_t keyid; /* IMA key identifier - not X509/PGP specific */ uint16_t sig_size; /* signature size */ uint8_t sig[0]; /* signature payload */ } __packed; /* integrity data associated with an inode */ struct integrity_iint_cache { struct rb_node rb_node; /* rooted in integrity_iint_tree */ struct inode *inode; /* back pointer to inode in question */ u64 version; /* track inode changes */ unsigned long flags; enum integrity_status ima_file_status:4; enum integrity_status ima_mmap_status:4; enum integrity_status ima_bprm_status:4; enum integrity_status ima_module_status:4; enum integrity_status ima_firmware_status:4; enum integrity_status evm_status:4; struct ima_digest_data *ima_hash; }; /* rbtree tree calls to lookup, insert, delete * integrity data associated with an inode. */ struct integrity_iint_cache *integrity_iint_find(struct inode *inode); int integrity_kernel_read(struct file *file, loff_t offset, char *addr, unsigned long count); int __init integrity_read_file(const char *path, char **data); #define INTEGRITY_KEYRING_EVM 0 #define INTEGRITY_KEYRING_MODULE 1 #define INTEGRITY_KEYRING_IMA 2 #define INTEGRITY_KEYRING_MAX 3 #ifdef CONFIG_INTEGRITY_SIGNATURE int integrity_digsig_verify(const unsigned int id, const char *sig, int siglen, const char *digest, int digestlen); int __init integrity_init_keyring(const unsigned int id); int __init integrity_load_x509(const unsigned int id, char *path); #else static inline int integrity_digsig_verify(const unsigned int id, const char *sig, int siglen, const char *digest, int digestlen) { return -EOPNOTSUPP; }